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Abstract 

Procedures are described for computing the Fourier trans- 
forms of one-dimensional periodic sequences of real num- 
bers and sequences that contain Hermitian and trans- 
lational symmetry. Transforms from real sequences to 
Hermitian sequences and back are particularly efficient if 
the number of grid points in a period is two or four times 
an odd number. If the relation between points that are sep- 
arated by half of a period is a change of sign or complex 
conjugate, periods that are a power of two times an odd 
number are also favorable for constructing algorithms that 
minimize redundant computations and complex multipli- 
cations. 

Introduction 

The computation of electron-density maps from struc- 
ture factors and the inverse problem of structure fac- 
tors from density maps require the computation of the 
Fourier transforms of functions defined at the nodes of a 
three-dimensional lattice that is a sublattice of the crys- 
tal lattice. These three-dimensional transforms can be 
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computed by the row--column method, which is a se- 
quence of one-dimensional transforms, utilizing proce- 
dures known as fast Fourier transforms, or FFTs. While 
Fourier transforms are, in general, computations involv- 
ing complex numbers, electron densities are real quanti- 
ties, and the structure factors have Hermitian symmetry, 
that is F ( - h )  = F(h)*. These facts may be used to reduce 
the required amount of computation and, further, as was 
shown by Ten Eyck (1973), space-group symmetry can 
be exploited to achieve additional reduction in computa- 
tion. The effect of space-group symmetry sometimes in- 
troduces translational symmetry into the one-dimensional 
sequences whose transforms must be computed. For ex- 
ample, a 21 screw axis passing through the origin causes 
the values of the function at points separated by one half 
of a period in the direction parallel to the axis to be com- 
plex conjugates of one another. In this paper we describe 
algorithms that exploit various types of one-dimensional 
symmetry to improve the efficiency of FFTs. 

Fast Fourier transform algorithms 

Consider a periodic function defined at the nodes of a one- 
dimensional lattice by the values x: for j = 0, 1 , . . . ,  
N - 1, with x j + n n  = xj ,  where n and N are inte- 
gers. Its discrete Fourier transform, or DFT, is defined for 
k =0 ,  1 , . . . , N -  1 by 

N - 1  

X k = x j w  N 

3=o 

(1) 
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where WN = exp ( - 2 n i / N )  and i = v/ST. If xj  and Xk 
are treated as the elements of column vectors, x and X, 
this may be written in matrix notation as 

X = FNX, (2) 

where FN is the matrix 

F N = 

l 1 1 . - -  1 

1 W N W2N "'" wNN -1 
_ 2 ( g -  1) 1 w 2 w4N . . . .  to N 

• • . . .  • 

N - 1  2 ( N - l )  • . w ( N - 1 )  2 
l w g w g • N 

This matrix is dense and complex, and the matrix multi- 
plication in (2) requires ( N -  1 )2 complex multiplications. 
It is always possible, however, to express it as a product 
of sparse matrices, with the result that the actual number 
of operations is approximately proportional to N log N. 
Such factorizations are the basis for constructing fast- 
Fourier-transform algorithms. 

The sparse factors of FN have various forms depending 
on whether N is prime or composite and, if it is compo- 
site, whether it has factors that are relatively prime, that 
is have no common factors larger than 1. The most effi- 
cient algorithm for a given N depends on computer archi- 
tecture, but all are designed to minimize time-consuming 
operations, particularly complex multiplications, each of 
which requires four real multiplications and two real ad- 
ditions or (Blahut, 1985) three real multiplications and 
three real additions. Particular algorithms have been de- 
scribed by Cooley & Tukey (1965), Good (1958), Thomas 
(1963), Kolba & Parks (1977), Burrus & Eschenbacher 
(1979), Temperton (1985), Agarwal & Cooley (1987), 
Rader (1968) and Winograd (1978). An extensive sum- 
mary of methods is given by Tolimieri, An & Lu (1989). 

F F T s  f o r  r e a l  a n d  H e r m i t i a n  s e q u e n c e s  

If the sequence xj  is composed of real numbers only, then 
its Fourier-transform sequence Xk has Hermitian sym- 
metry, so that X u - k  = X~. Conversely, if the sequence 
xj  has Hermitian symmetry, Xk is real. A sequence of 
N complex numbers that has Hermitian symmetry con- 
tains redundant information. Ten Eyck (1973) described, 
for even values of N,  a procedure for reducing the real- 
to-Hermitian and Hermitian-to-real transforms to trans- 
forms of complex sequences of length N/2 .  In the real- 
to-Hermitian case, this procedure, which is based on the 
Cooley-Tukey (Cooley & Tukey, 1965) factorization, de- 
fines two real sequences, r and s, each with length N/2 ,  by 
r j  = x2 j  and s i = x 2 j + l ,  and defines a complex sequence, 
y, of length N / 2  by yj = rj + i s j .  Then Yk = Rk + iSk, 

Rk = RN/2_ k = ( l / 2 ) ( Y k  + YN/2-k)  (3) 

and 

Finally, 

and 

Sk = S'N~2_ k = ( - i / 2 ) ( Y k  - Y~v/2-k). (4) 

Xk = X~v_k = Rk + w~vSk (5) 

X N / 2 - k  -- X'N~2+ k -- t~k -- 11'kNSk • (6 )  

This procedure works for any even value of N, and the 
Hermitian-to-real case is its inverse, in which the trans- 
form of a complex sequence of length N / 2  contains the 
real sequence in its real and imaginary parts• In both cases, 
however, the factor Wku multiplying Sk (commonly called 
a 'twiddle factor') requires N / 2  complex multiplications 
in computing the transform. If, however, N is of the form 
4n + 2, that is twice an odd number, then an alterna- 
tive procedure, based on the Good-Thomas (Good, 1958; 
Thomas, 1963) factorization, avoids complex multiplica- 
tion. In this case, (1) can be written 

N / 2 - I  
2/k , (7) X k -  Z X2 jWN +XN/2+2jw(NN/2+23)k 

j=O 

which reduces to 

N / 2 - 1  

E • 
3=0 

(8) 

Let x be a real sequence and let r j  = x 2 3  and sj = 
XN/2+23. Then X, R and S are all Hermitian and, for 
k = O , l , . . . , ( N / 2 - 1 ) / 2 ,  

X2k = X N_2k = R2k + S2k (9) 

and 

X N / 2 + 2 k  = X*N/2_2k -- R2k  - S2k.  ( 1 0 )  

If one sets y = r + is, Y = R + iS, and R and S are given 
in terms of Y in the same way as in (3) and (4). Thus 
the transform of a sequence of N real numbers is formed 
from the transform of a sequence of N / 2  complex num- 
bers in which the imaginary part of each is displaced by 
N / 2  in the real sequence from its real part. Note that there 
is no complex multiplication in this twofold reduction in 
the length of the sequence. 

The transform from Hermitian to real is the inverse pro- 
cess. Let r j  = x j + x *  sj = ( - l ) J ( x j - x  * N / 2 - j '  N/2- j  ) and 
yj = rj + i s j .  Then Yk = Rk + iSk and, because r and s 
are Hermitian, Rk is real and iSk is imaginary. Thus X2k 
is found in the real part of Yk and Xy/2+2k is found in 
the imaginary part of Yk. 

A similar procedure can be used if N is four times an 
odd number. In this case the equations that are analogous 
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to (7) and (8) are 

N/2-1 
2jk , 

Xk = Z X23WN +XN/4+23W(N ~/4+23)k 
j = 0  

(11) 

and 

N/2-1 
• k jk 

Xk  = Z [X2j + (--Z) XN/4+2j]WN/2. 
j=O 

(12) 

Let r;  = x23 and sj = XN/4+2j. Then 

Xk = X ~ _  k = Rh. + ( - i ) k S k .  (13) 

If we again set y = r + is, R and S can be found from 
Y by (3) and (4). The transform of a real sequence with 
period N can be computed from the transform of a com- 
plex sequence with period N / 2  in which the imaginary 
part of each element is displaced by N / 4  in the real se- 
quence from its real part. Again, no complex multiplica- 
tion is required. 

As before, the transform from Hermitian to real is the 
inverse process. Let rj = xj + X'N~2_3, 8j = i 3 ( x j  -- 

Xu/2_ 3) and yj = rj + i83.  Then r and s are Hermitian, 

Rk is real, iSk is imaginary, X2k is found in the real part 
of Yk and  XN/4+2k is found in the imaginary part of Yk. 

Translational symmetry 

The discrete Fourier transform, as defined in (1), as- 
sumes that the function is periodic, that it is defined at 
evenly spaced points and that the sum is over a complete 
period. A three-dimensional Fourier transform can be sep- 
arated into a sequence of one-dimensional transforms in 
which the input coefficients for the second dimension are 
the output coefficients for the first dimension, and the in- 
put for the third dimension is the output from the second 
dimension. When the space group contains screw axes or 
is based on a centered lattice, the inputs to the second- and 
third-dimensional transforms contain relationships like 
XN/2+ j = --X 3, XN/2+ j = Xj or  XN/2+ J = - -x j ,  w h i c h  
causes the full period to contain redundant information. 
Ten Eyck (1973) gives a procedure that is applicable to 
these cases, but it depends on a transformation that is sin- 
gular at j = 0 and will tend to be ill conditioned for 
small values of j / N .  As in the case of real and Hermi- 
tian sequences, however, if N is twice an odd number, 
the Good-Thomas factorization allows a straightforward 
solution to the problem. In this case it is apparent that a 
sequence consisting of only the even-numbered elements 
of x contains a complete set of information and is itself 
periodic. This principle can be extended to the case of 
N = 2k3,I, where M is an odd number and k is a pos- 
itive integer. 

As an illustration, consider the case of 3,I = 5, k = 2, 
so that N = 20. The one-dimensional sequence can be 
arranged in the two-dimensional array 

X0 X4 X8 X12 X16 

X5 X9 X13 X17 Xl 

Xl0 X14 X18 X2 X6 

X15 X19 X3 X7 Xl l  

The rows and columns of this array contain periodic sub- 
sets of the full sequence and, if x10+3 = xj ,  the array can 
be rewritten 

T0 X4 X 8 X~ X 6 

X5 X9 X3 X7 ~1 

x; ~ ~; ~2 ~'6 
X 5 X 9 x3 X7 ~1 

With the row-column method, the transform of the full 
sequence can be written as the consecutive transforms of 
the rows and columns of this array. Because the trans- 
form of the complex conjugate of a sequence is the com- 
plex conjugate of the mirror image of the transform of the 
sequence, the intermediate array resulting from the row 
transforms, which we denote by 2"j, is 

2"o 2"4 ~ 2'12 2"16 
& ~ &3 &7 2'1 

4 

x~ 2,: 2,;~ 2,:~ 2,:~ 

Clearly only the transforms of the first two rows are 
needed to fill in this complete array, and the transforms 
of the first three columns of this array are sufficient to 
complete the transform of x, in which X2o-2k = X~k 
and X20-2k-1 = -X~k~_ 1. If xx/2+j  = - x j ,  the sign 

* relations are reversed, so that X x - 2 k  = -X2~ , and 
X,'v-2k-1 = X2k+l. If XN/2+j = --x), then Xzk = 0 
for all k. 

Discussion 

Although FFT routines based on factorizafions of the 
N × N discrete Fourier-transform matrix can be written 
for any value of N, the routines for some values of N 
are relatively more efficient than for others, and the pro- 
portionality to N log N is only approximate. It is widely 
believed that N must be a product of small prime num- 
bers. In fact, a popular reference on numerical methods 
(Press, Flannery, Teukolsky & Vetterling, 1986) recom- 
mends that, if the data are defined over a period whose 
size is not a power of two, they be filled with zeros up to 
the next-higher power of two. Actually, in the crystallo- 
graphic case, where the transforms are between real and 
Hermitian data and where partial transforms contain sym- 
metry, there is a positive advantage to periods for which 
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N is a small power of two times an odd number and, fur- 
ther, there is also an advantage if that odd number is a 
product of several different prime numbers rather than a 
high power of a small one. A library of efficient FVI" rou- 
tines for a wide range of values of N is being developed 
(An, Lu, Prince & Tolimieri, 1992). 
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Abstract  

We extend our study of the condit ional  probabi l i ty  
density funct ion (c.p.d.f.) of  the three-phase invariant  
for the space group P1 [Shmueli ,  Rabinovich & Weiss 
(1989). Acta Crysr A45, 361-367] to the monocl in ic  
space group P2. A detailed derivation of the charac- 
teristic funct ion (and hence Fourier coefficients) of  
the latter c.p.d.f, is presented in this paper,  as well 
as some simplif icat ions of the resulting expressions.  

Introduct ion 

The first exact study of  the condit ional  probabi l i ty  
density funct ion (p.d.f.) of  a three-phase invariant  
was presented recently (Shmueli ,  Rabinovich & 
Weiss, 1989a) in terms of a Fourier representat ion 
of the relevant hexavariate  p.d.f. The resulting series 
was then adapted to computer  evaluation by suitably 
part i t ioning the sums and taking their symmetry into 
account (Shmueli ,  Rabinovich  & Weiss, 1989b). 
Although the formal ism appeared to be extremely 
complicated it was seen that by properly exploit ing 
the symmetry inherent  in the Fourier summat ions  it 
is possible to reduce the comput ing efforts sufficiently 
that convent ional  mainf rames  and workstations are 
able to cope with the relevant computat ions.  The 
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study cited earlier contains a derivation of the general 
form of the condit ional  p.d.f, as well as its evaluat ion 
for the space group P 1 -  the simplest  and,  so far, 
the only example  for which noncentrosymmetr ic  
direct-methods formalisms have been extensively 
developed. Our earlier study shows that the general 
form of the condit ional  p.d.f, is given by a summat ion  
of the form 

E C,,Z,, (1) 
tl 

where u is a vector of  the (six) summat ion  indices 
and the Ca are coefficients depending  on the composi-  
tion and symmetry of the crystal. The funct ion Z,, 
depends on the magni tudes  of the normal ized struc- 
ture factors and is the same for all the symmetries  
and composit ions.  While the conditional p.d.f, for 
the three-phase invariant  in P1, in either its approxi-  
mate (Cochran,  1955) or exact (Shmueli  et al., 1989a) 
form, may lead to satisfactory practical algorithms, 
we believe that it is also desirable to examine  the 
effect of  symmetry on this important  statistic. To do 
this, we need only calculate C, in (1). As pointed 
out, e.g. by Shmueli  & Weiss (1985), these Fourier  
coefficients are just the values of the characteristic 
function C(w~,  w 2 , . . . ,  W k , . . . )  of the p.d.f, at the 
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